In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography.
نویسندگان
چکیده
BACKGROUND Color Doppler optical coherence tomography (CDOCT) combines laser Doppler velocimetry and optical coherence tomography for simultaneous micron-scale resolution cross-sectional imaging of tissue microstructure and blood flow. Recently, CDOCT was adapted to a slitlamp biomicroscope for imaging structure and blood flow in the human retina. OBJECTIVE To demonstrate feasibility of CDOCT for imaging retinal hemodynamics. DESIGN Enabling CDOCT to measure retinal blood flow pulsatility in humans. SETTING Laboratory. MAIN OUTCOME MEASURES Time-resolved flow profiles and images of retinal blood flow dynamics for measurement of pulsatility within retinal vessels. RESULTS Rapid sequences of images were acquired over selected vessels near the optic nerve head. From these images, retinal blood flow profiles were extracted and synchronized to an external reference obtained with a photoplethysmograph. Each profile was acquired in less than 10 milliseconds. CONCLUSIONS Our results indicate that CDOCT provides laser Doppler information in addition to conventional optical coherence tomography, allowing the observation of blood flow dynamics simultaneous to imaging retinal structure. CDOCT is a promising technology for research and clinical studies of retinal blood flow dynamics. CLINICAL RELEVANCE Blood flow dynamics, such as pulsatility and autoregulation, have been shown to change throughout the progression of diabetic retinopathy and glaucoma. Enabling CDOCT to observe retinal dynamics improves its potential as a clinical diagnostic tool.
منابع مشابه
In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography
An ultra-high-speed spectral domain optical Doppler tomography (SD-ODT) system is used to acquire images of blood flow in a human retina in vivo, at 29,000 depth profiles (A-lines) per second and with data acquisition over 99% of the measurement time. The phase stability of the system is examined and image processing algorithms are presented that allow accurate determination of bi-directional D...
متن کاملImaging pulsatile retinal blood flow in human eye.
A functional Fourier domain optical coherence tomography instrument offering spectral Doppler imaging of in vivo pulsatile human retinal blood flow was constructed. An improved phase-resolved algorithm was developed to correct bulk motion artifacts. Spectral Doppler imaging provides complementary temporal flow information to the spatially distributed flow information of the color Doppler image ...
متن کاملIn vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography.
We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is...
متن کاملDoppler optical coherence tomography for interventional cardiovascular guidance: in vivo feasibility and forward-viewing probe flow phantom demonstration.
We demonstrate the potential of a forward-looking Doppler optical coherence tomography (OCT) probe for color flow imaging in several commonly seen narrowed artery morphologies. As a proof of concept, we present imaging results of a surgically exposed thrombotic occlusion model that was imaged superficially to demonstrate that Doppler OCT can identify flow within the recanalization channels of a...
متن کاملReal-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging
In this paper, we analyze the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images are compared. Blood vessels down to the capillary level were detected and visualized with the optimized optical coherence color Doppler a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of ophthalmology
دوره 121 2 شماره
صفحات -
تاریخ انتشار 2003